Application of numerical methods to elasticity imaging.
نویسندگان
چکیده
Elasticity imaging can be understood as the intersection of the study of biomechanical properties, imaging sciences, and physics. It was mainly motivated by the fact that pathological tissue presents an increased stiffness when compared to surrounding normal tissue. In the last two decades, research on elasticity imaging has been an international and interdisciplinary pursuit aiming to map the viscoelastic properties of tissue in order to provide clinically useful information. As a result, several modalities of elasticity imaging, mostly based on ultrasound but also on magnetic resonance imaging and optical coherence tomography, have been proposed and applied to a number of clinical applications: cancer diagnosis (prostate, breast, liver), hepatic cirrhosis, renal disease, thyroiditis, arterial plaque evaluation, wall stiffness in arteries, evaluation of thrombosis in veins, and many others. In this context, numerical methods are applied to solve forward and inverse problems implicit in the algorithms in order to estimate viscoelastic linear and nonlinear parameters, especially for quantitative elasticity imaging modalities. In this work, an introduction to elasticity imaging modalities is presented. The working principle of qualitative modalities (sonoelasticity, strain elastography, acoustic radiation force impulse) and quantitative modalities (Crawling Waves Sonoelastography, Spatially Modulated Ultrasound Radiation Force (SMURF), Supersonic Imaging) will be explained. Subsequently, the areas in which numerical methods can be applied to elasticity imaging are highlighted and discussed. Finally, we present a detailed example of applying total variation and AM-FM techniques to the estimation of elasticity.
منابع مشابه
Near field effect on elasticity measurement for cartilage-bone structure using Lamb wave method
BACKGROUND Cartilage elasticity changes with cartilage degeneration. Hence, cartilage elasticity detection might be an alternative to traditional imaging methods for the early diagnosis of osteoarthritis. Based on the wave propagation measurement, Shear wave elastography (SWE) become an emerging non-invasive elasticity detection method. The wave propagation model, which is affected by tissue sh...
متن کاملModified Fixed Grid Finite Element Method to Solve 3D Elasticity Problems of Functionally Graded Materials
In the present paper, applicability of the modified fixed grid finite element method in solution of three dimensional elasticity problems of functionally graded materials is investigated. In the non-boundary-fitted meshes, the elements are not conforming to the domain boundaries and the boundary nodes which are used in the traditional finite element method for the application of boundary condit...
متن کاملDAMAGE DETECTION IN THIN PLATES USING A GRADIENT-BASED SECOND-ORDER NUMERICAL OPTIMIZATION TECHNIQUE
The purpose of the present study is the damage detection in the thin plates in terms of the wide application of such structures in various branches of engineering such as structural, mechanical, aerospace, shipbuilding, etc. using gradient-based second-order numerical optimization techniques. The technique used for optimization in this study is the second-order Levenberg-Marquardt algorithm (SO...
متن کاملHighly Scalable Parallel Domain Decomposition Methods with an Application to Biomechanics
Highly scalable parallel domain decomposition methods for elliptic partial differential equations are considered with a special emphasis on problems arising in elasticity. The focus of this survey article is on Finite Element Tearing and Interconnecting (FETI) methods, a family of nonoverlapping domain decomposition methods where the continuity between the subdomains, in principle, is enforced ...
متن کاملConvergence of the multigrid-reduction-in-time algorithm for the linear elasticity equations
This paper presents some recent advances for parallel-in-time methods applied to linear elasticity. With recent computer architecture changes leading to stagnant clock speeds, but ever increasing numbers of cores, future speedups will be available through increased concurrency. Thus, sequential algorithms, such as time stepping, will suffer a bottleneck. This paper explores multigrid reduction ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular & cellular biomechanics : MCB
دوره 10 1 شماره
صفحات -
تاریخ انتشار 2013